• IP addresses are NOT logged in this forum so there's no point asking. Please note that this forum is full of homophobes, racists, lunatics, schizophrenics & absolute nut jobs with a smattering of geniuses, Chinese chauvinists, Moderate Muslims and last but not least a couple of "know-it-alls" constantly sprouting their dubious wisdom. If you believe that content generated by unsavory characters might cause you offense PLEASE LEAVE NOW! Sammyboy Admin and Staff are not responsible for your hurt feelings should you choose to read any of the content here.

    The OTHER forum is HERE so please stop asking.

AMDK scientists say we are in a hologram world lai De woh, kym?

k1976

Alfrescian
Loyal
As theoretical physics delves deeper into the fundamental nature of reality, we’re left to grapple with the questions it leaves us. For example, some physicists claim that our universe is merely an illusion, a product of quantum machinations happening in a lower-dimensional setting—in other words, a hologram.

But do these latest theoretical insights offer revelations into reality, itself, or merely serve as mathematical tools to help us solve thorny problems? When it comes to the most cutting-edge physical theories, what is a product of our imaginations, and what is a product of the universe?
 

k1976

Alfrescian
Loyal
Black Holes May Be Evidence

The trouble began with those bothersome boogeymen of the cosmos, black holes. On the surface (and careful readers will be rewarded later with the realization that this is a pun), black holes are simple; stuff falls in and never gets out.

All the information about that stuff gets locked away behind the event horizon, never to be seen again.

But in the 1970s, famed astrophysicist Stephen Hawking realized that black holes aren’t entirely black. They’re a little gray and a little leaky, emitting a tiny amount of radiation, which causes black holes to evaporate slowly, but inevitably, from existence altogether.
 

k1976

Alfrescian
Loyal
However, that radiation carries no information with it, which brings up a nasty paradox: information goes in, but doesn’t come out, and then the black hole goes away. So what happened to all the information?

✅ In this context, information is the list of all the properties of all the particles that fell into the black hole—in other words, everything you need to reconstruct the original objects that fell in. Instead, what comes out of a black hole, due to Hawking radiation, is just a bunch of random particles. You can’t tell what fell in based on the radiation coming out.

A major clue came in the decades that followed Hawking’s extraordinary discovery. One way to measure the amount of information is through entropy, a thermodynamic concept that is loosely related to the amount of disorder in a system. Black holes have a surprising property: their entropy is proportional to their surface area, not their volume. In other words, the amount of information in a black hole is related to its two-dimensional surface, not its three-dimensional volume.

✅ The concept of entropy describes a system’s tendency to move from order toward disorder, because there are so many more ways for a disordered state to exist than an ordered state. For example, you could clean your room, and there’s only one way for that room to be clean. Yet, there are countless ways for it not to be clean, or become chaotic, like adding a smudge of dirt or a stray sock in a corner. So over time, entropy must increase. That goes for any system in the universe, not just your room.


This is pretty much unlike every other object in the entire universe, and so naturally a lot of physicists all of sudden became very interested in black holes, with top-tier physicists like Leonard Susskind leading the charge into this new land of the holographic principle.

The name comes from holography itself. Ever see a hologram in real life, and it looks like the image leaps out at you? That’s because the hologram encodes all the three-dimensional information in a two-dimensional surface.
 

k1976

Alfrescian
Loyal
A Two-Dimensional Universe?
This idea isn’t as crazy as it first appears, because we might actually have a working example of the holographic principle in action. It’s known by the rather awkward name of the AdS/CFT correspondence, and it was developed in 1997 by physicist Juan Maldacena.


To understand, let’s construct a special kind of universe with some strange properties. One, this universe has five spatial dimensions. Two, it’s completely empty of matter and radiation. Three, it contains a persistent cosmological force that bends it inward. This kind of spacetime is called a (five-dimensional) anti-de Sitter space.

Now, let’s say you’re trying to solve a very complicated problem within that universe, like how quantum gravity works. We’ve been trying to solve quantum gravity for almost a century now, and while we don’t have any answers yet, we do have a set of tools that we hope someday will lead us to one. That set of tools is known as string theory.

✅ Let’s unpack some more complex concepts.

Quantum gravity is an understanding of gravity applied to the smallest things in the universe, such as subatomic particles. We can understand the behavior of these particles using quantum mechanics, but when gravity becomes strong, like inside of black holes, our theories break down. Quantum gravity is an attempt to fix those broken theories.

Quantum fields are entities that soak the entire universe. When patches of the fields are energized, we see the creation of particles or the exchange of forces.

Conformal field theory is a type of quantum field theory that has certain special mathematical properties. These kinds of theories have limited applications in some high-energy physics experiments, but are not very useful outside of that.

Maldacena discovered that you can transform this problem—the problem of how to solve for quantum gravity in this weird universe—into a completely different problem living on its four-dimensional boundary. After you make that transformation, all the gravity goes away, replaced with a special kind of quantum theory known as a conformal field theory (which is the CFT part of the correspondence). By now, we’ve become extremely adept at solving quantum field theory problems, and we have a whole host of well-tested tools for working through those kinds of mathematics.


Maldacena performed the theoretical physics equivalent of a magic trick: he was able to take a problem that we don’t know how to solve (quantum gravity with string theory) and transform it into one that we can solve (a conformal field theory with quantum fields).
 

Eisenhut

Alfrescian
Loyal
World oldest book already told many times, scientist very slow

"Then I saw a new heaven and a new earth, for the first heaven and the first earth had passed away, and the sea was no more. " Rev 21

"
But in those days, following that distress,
“ ‘the sun will be darkened,
and the moon will not give its light;
25the stars will fall from the sky,
and the heavenly bodies will be shaken.’ "
Mark 13:24
 
Top