Review of the Evidence
Breast cancer
Iodine's role in maintaining the health of breast tissue is suggested by its therapeutic effects on benign breast conditions. In a publication reviewing three clinical trials of varied designs, molecular iodine (I2) reduced fibrocystic signs/symptoms while iodide (I-) was less effective and affected thyroidal function more readily.34 In one of the trials included in that review, the dose of molecular iodine was 0.07 mg to 0.09 mg/kg body weight per day. Converting this to something more clinically useful, this is approximately 3.2 mg to 4.0 mg/100 lb body weight per day of molecular iodine (I2).
In another study of 111 women with cyclic mastalgia, women took either 6 mg/day, 3 mg/day, or 1.5 mg/day of a combination iodide/iodate (I-/IO3-), or a placebo.35 Sodium iodate (NaIO3) was used with the prediction of dissolution in the stomach to molecular iodine (I2). In that study, more than 50% of the women taking 6 mg/day had a reduction in mastalgia symptoms at 6 months.
In keeping with iodine's effects in benign breast conditions,
in vitro and
in vivo studies suggest that the therapeutic form of iodine in breast cancer is molecular iodine (I2). While NIS has been considered a necessary means for iodide uptake, human breast cancer cells (MCF-7) have been found to use facilitated diffusion of I2 as well.36 This may explain why levels of iodine are higher in cancerous breast tissue than surrounding normal tissue.37 As mentioned,
I2 is capable of inducing apoptosis in human breast cancer cells through mitochondrial mediated pathways. In a rodent model of mammary carcinogenesis molecular iodine―but not iodide―was able to prevent promotion of disease.38
There are several lines of evidence to support the role of molecular iodine (I2) as preventive of carcinogenic processes. In a chemical carcinogenesis model of mammary tumors, using Sprague-Dawley rats given methyl-nitrosurea, iodine (I2) was given as a 0.05% of water source and the rats were allowed unrestricted access. The incidence of mammary tumors was 37.5% lower in the treated rats vs controls. Further, there was an increase in proapoptotic caspase 2 and PPAR gamma expression. They also demonstrated that the vasculature of tumors in the rats given iodine (I2) as well as vascular endothelial growth factor expression was significantly less in the tumors developed by those consuming iodine. In rats that developed tumors, there was no difference in tumor number or volume.39
Iodine may also be affecting the binding of estrogen receptors to the steroid-binding element. Using breast cancer cells (MCF-7 cells), Stoddard and colleagues demonstrated that Lugol's solution (5% iodine/10% iodide) affected 43 genes involved cell cycle growth, proliferation, and differentiation.40 Many of the 43 genes are those upregulated by estrogens, implying that the Lugol's solution interfered with this action and had a net "antiestrogenic" effect on gene expression. This is in keeping with a rodent study using DMBA-induced mammary cancers that found a supplement of 0.1% of a combination I2/KI (0.05%/0.05%) lessened estrogen induced DNA adduct formation and increasing PPAR-gamma expression.41
Gastric cancer
The link between gastric cancers and areas of endemic goiter dates back to 1924,42 and ongoing data continue to corroborate this association.
In a case control study of people with gastric cancer, the prevalence of goiter was more than twice that of matched controls (49.1% vs 20%).43 In another case control study in Iran, urinary iodine excretion was assessed in 100 patients with gastric cancer. They found that "mean urinary iodine levels were lower in the patients with stomach cancer, 61.9 µg/g creatinine, compared to 101.7 µg/g creatinine in the control group (P<0.0001). More of the cancer patients (49.0%) had severe iodine deficiency (< 25 µg/g creatinine) than people in the control group (19.1%) (P<0.0001)."44 In a Turkish study using direct tissue measurements, "iodine levels were lower in gastric cancer tissue (17.8±3.4 ng I/mg protein) compared with surrounding normal tissue (41.7±8.0 ng I/mg protein) (P<.001)."45 In other studies, gastric cancers as well as later stages of Barrett's esophagus were shown to have limited or absent NIS.46,47 Lastly, the addition of iodine-containing salt in Poland in the 1990s to 2000s has been postulated to be responsible for the decreased incidence of stomach cancer there.48
Its actions as an antioxidant, antiinflammatory, and prodifferentiation agent are thought to be essential to the health of cells lining the stomach.49,50 Systemically, iodine is recognized as an integral nutrient for proper immune function by the Institute of Medicine and as well as the United Nations Nutritional Policy Board.51,52 Correlations between immune deficiency, goiter, and gastric cancer have been documented in regions of Italy.53 Another hypothesis of how iodine deficiency may contribute to gastric cancer comes from its local effects. In one experiment, iodine was able to inhibit carcinogenic processes involving
Helicobacter pylori.54