• IP addresses are NOT logged in this forum so there's no point asking. Please note that this forum is full of homophobes, racists, lunatics, schizophrenics & absolute nut jobs with a smattering of geniuses, Chinese chauvinists, Moderate Muslims and last but not least a couple of "know-it-alls" constantly sprouting their dubious wisdom. If you believe that content generated by unsavory characters might cause you offense PLEASE LEAVE NOW! Sammyboy Admin and Staff are not responsible for your hurt feelings should you choose to read any of the content here.

    The OTHER forum is HERE so please stop asking.

everyday new ground breaking MIT discovery

madmansg

Alfrescian
Loyal
Yesterday is energy crisis cure. Today is cancer cure. So many ground breaking discoveries at MIT. NUS and NTU and SMU only ground breaking is by NS slaves digging trenches.


==================
Cancer Cures Find Biology-Physics Convergence With MIT `Genius'

By Brian Kladko and John Taddei
Enlarge Image/Details

Aug. 7 (Bloomberg) -- Angela Belcher, a materials engineer at the Massachusetts Institute of Technology, didn't plan on joining the war on cancer. That is, until she was drafted to work alongside the school's biologists.

Belcher, 40, a 2004 winner of a MacArthur Foundation genius award, tailors viruses that build microscopic electronic parts such as transistors. She was recruited by MIT's cancer scientists to uncover new ways to detect tumors early and deliver drugs more safely.

Biologists at MIT, in Cambridge, helped discover the genes that have led to a new generation of so-called targeted cancer medicines. MIT -- like Stanford University in California and Emory University in Atlanta -- now is deploying engineers for the first time to build on those successes. The approach is spurring interest from biotechnology company backers, said Terry McGuire, co-founder of Polaris Venture Partners, an investment company in nearby Waltham, Massachusetts.

``Investors are realizing that a combination of engineering and biology is going to yield greater products,'' McGuire said a telephone interview on July 28.

McGuire is an adviser to MIT's David H. Koch Institute for Integrative Cancer Research, funded partly with $100 million from Koch, a 68-year-old billionaire who has been under treatment for prostate cancer for 16 years. The Koch Institute is constructing an over-$200 million building, with 25 laboratories, scheduled to open in December 2010.

Cancer Survivor

``One only has to experience cancer personally to become a crusader for curing the disease,'' Koch, from the founding family at Wichita, Kansas-based Koch Industries Inc., said in a telephone interview on July 22. The partnership between biologists and engineers, he said, ``is incredibly powerful.''

Each of the seven floors will have biologists and engineers, ``equal partners in the battle against this disease,'' MIT President Susan Hockfield, a 57-year-old neuroscientist, told a gathering at the school in June. ``The building is explicitly designed to help people bump into each other --intellectually, that is.''

Biologist-engineer collaborations against cancer have also been initiated at the University of North Carolina in Chapel Hill, the Georgia Institute of Technology in Atlanta, Northwestern University in Evanston, Illinois, Washington University in St. Louis, the California Institute of Technology in Pasadena and the University of California, San Diego.

Billions for Research

The U.S. government will spend $4.8 billion on cancer studies in the year ending Sept. 30, almost twice the $2.5 billion a decade earlier, according to the National Cancer Institute in Bethesda, Maryland. About 75 percent of the Koch Institute's $50 million annual science budget comes from federal grants, said the center's director, Tyler Jacks, in a July 15 interview.

MIT biologists were involved in the original gene discoveries that led to the cancer drug Herceptin, made by South San Francisco-based Genentech Inc., and Gleevec, from Novartis AG in Basel, Switzerland. Herceptin, for breast cancer, generated $4.6 billion in revenue, according to Roche Holding AG, the Basel-based drugmaker that also markets the medicine.

The Koch Institute has an even split of biologists and engineers among the 24 faculty members. By comparison, no more than 5 percent of the 28,000 members of the American Association for Cancer Research, based in Philadelphia, specialize in the physical sciences, said Margaret A. Foti, the group's chief executive officer, in a telephone interview.

`Ahead of the Curve'

``We desperately need both physicists and engineers in the field of cancer research right now because of all the new delivery systems,'' Foti said. ``Centers like the one at MIT are really ahead of the curve.''

Belcher, a Texas native who won a grant from the John D. and Catherine T. MacArthur Foundation in Chicago, was recruited by MIT's Robert Langer, the drug-delivery pioneer who runs the world's largest academic biomedical-engineering lab.

``She's one of the most imaginative, creative researchers I've ever seen, and really one of the young superstars at MIT,'' said Langer, 59, who formerly headed the U.S. Food and Drug Administration's Science Board, in an interview on July 14.

Belcher's goal is to create viruses that when injected into the body can hone in on tumors, she said in a June 3 interview. The viruses can act like freight delivery agents, carrying chemicals that can make otherwise unseen tumors more visible to imaging scans, or conveying chemotherapy directly to malignant cells.

Earlier Detection

The idea is to create diagnostics that detect cancer early enough for treatment to be more effective, Belcher said. The viruses' drug-delivery would be more accurately targeted than standard chemotherapy, which releases toxins throughout the body, harming healthy tissue in addition to the tumor.

She is also investigating how fluorescent tags called quantum dots might piggyback on viruses, highlighting the size, shape and location of a malignancy. While quantum dots are currently made from cadmium, which is toxic to humans, Belcher is trying to make a safe version from gallium nitride.

Belcher, who earned a Ph.D. in chemistry at the University of California, Santa Barbara, has genetically engineered viruses that assemble microscopic electrode wires by combining molecules of cobalt oxide. The wires, which are one ten-thousandth the width of a human hair, could provide power for implantable medical devices or for tiny, unmanned flying vehicles that measure air quality, she said.

`Check Your Ego'

Now Belcher devotes about 20 percent of her time to the viruses' cancer-related applications, an area where she said she hadn't thought she had anything to contribute.

``Part of it was just out of ignorance -- not knowing the field, not knowing the people, and what was happening,'' she said. ``So I didn't run to it, I got pulled into it.''

The experience can be humbling.

``You have to check your ego at the door,'' she said. ``You have to walk in and say, `What does that mean? Back up.' I have no problem admitting that I don't know anything, and learning.''

To contact the reporters on this story: John Taddei in New York at [email protected]
Last Updated: August 7, 2008 00:01 EDT


Email this article Printer friendly format


Advertisement: Top hedge fund managers reveal how they profit in good times and bad.
 

Kenshinng

Alfrescian
Loyal
ahh , wonder if any of these cancer killing 'cures' might mutate to be human killers. and viruses spread damn fast!
 

nexus

Alfrescian
Loyal
At times you wonder, will real like mimic the movies

Like "I am Legend" and "Resident Evil"
 

angry_one

Alfrescian
Loyal
http://www.sciencedaily.com/releases/2008/08/080811092450.htm

Invisibility Cloak One Step Closer: New Metamaterials Bend Light Backwards

ScienceDaily (Aug. 11, 2008) — Scientists at the University of California, Berkeley, have for the first time engineered 3-D materials that can reverse the natural direction of visible and near-infrared light, a development that could help form the basis for higher resolution optical imaging, nanocircuits for high-powered computers, and, to the delight of science-fiction and fantasy buffs, cloaking devices that could render objects invisible to the human eye.
See also:
Matter & Energy

* Optics
* Materials Science
* Nanotechnology

Computers & Math

* Computer Science
* Artificial Intelligence
* Hacking

Reference

* Electromagnetic radiation
* Optics
* Doppler effect
* Confocal laser scanning microscopy

Two breakthroughs in the development of metamaterials - composite materials with extraordinary capabilities to bend electromagnetic waves - are reported separately this week in the Aug. 13 advanced online issue of Nature, and in the Aug. 15 issue of Science.

Applications for a metamaterial entail altering how light normally behaves. In the case of invisibility cloaks or shields, the material would need to curve light waves completely around the object like a river flowing around a rock. For optical microscopes to discern individual, living viruses or DNA molecules, the resolution of the microscope must be smaller than the wavelength of light.

The common thread in such metamaterials is negative refraction. In contrast, all materials found in nature have a positive refractive index, a measure of how much electromagnetic waves are bent when moving from one medium to another.

In a classic illustration of how refraction works, the submerged part of a pole inserted into water will appear as if it is bent up towards the water's surface. If water exhibited negative refraction, the submerged portion of the pole would instead appear to jut out from the water's surface. Or, to give another example, a fish swimming underwater would instead appear to be moving in the air above the water's surface.

Other research teams have previously developed metamaterials that function at optical frequencies, but those 2-D materials have been limited to a single monolayer of artificial atoms whose light-bending properties cannot be defined. Thicker, 3-D metamaterials with negative refraction have only been reported at longer microwave wavelengths.

"What we have done is take two very different approaches to the challenge of creating bulk metamaterials that can exhibit negative refraction in optical frequencies," said Xiang Zhang, professor at UC Berkeley's Nanoscale Science and Engineering Center, funded by the National Science Foundation (NSF), and head of the research teams that developed the two new metamaterials. "Both bring us a major step closer to the development of practical applications for metamaterials."

Zhang is also a faculty scientist in the Material Sciences Division at the Lawrence Berkeley National Laboratory.

Humans view the world through the narrow band of electromagnetic radiation known as visible light, with wavelengths ranging from 400 nanometers (violet and purple light), to 700 nanometers (deep red light). Infrared light wavelengths are longer, measuring from about 750 nanometers to 1 millimeter. (A human hair is about 100,000 nanometers in diameter.)

For a metamaterial to achieve negative refraction, its structural array must be smaller than the electromagnetic wavelength being used. Not surprisingly, there has been more success in manipulating wavelengths in the longer microwave band, which can measure 1 millimeter up to 30 centimeters long.

In the Nature paper, the UC Berkeley researchers stacked together alternating layers of silver and non-conducting magnesium fluoride, and cut nanoscale-sized fishnet patterns into the layers to create a bulk optical metamaterial. At wavelengths as short as 1500 nanometers, the near-infrared light range, researchers measured a negative index of refraction.

Jason Valentine, UC Berkeley graduate student and co-lead author of the Nature paper, explained that each pair of conducting and non-conducting layers forms a circuit, or current loop. Stacking the alternating layers together creates a series of circuits that respond together in opposition to that of the magnetic field from the incoming light.

Valentine also noted that both materials achieve negative refraction while minimizing the amount of energy that is absorbed or "lost" as light passes through them. In the case of the "fishnet" material described in Nature, the strongly interacting nanocircuits allow the light to pass through the material and expend less energy moving through the metal layers.

"Natural materials do not respond to the magnetic field of light, but the metamaterial we created here does," said Valentine. "It is the first bulk material that can be described as having optical magnetism, so both the electrical and magnetic fields in a light wave move backward in the material."

The metamaterial described in the Science paper takes another approach to the goal of bending light backwards. It is composed of silver nanowires grown inside porous aluminum oxide. Although the structure is about 10 times thinner than a piece of paper - a wayward sneeze could blow it away - it is considered a bulk metamaterial because it is more than 10 times the size of a wavelength of light.

The authors of the Science paper observed negative refraction from red light wavelengths as short as 660 nanometers. It is the first demonstration of bulk media bending visible light backwards.

"The geometry of the vertical nanowires, which were equidistant and parallel to each other, were designed to only respond to the electrical field in light waves," said Jie Yao, a student in UC Berkeley's Graduate Program in Applied Science and Technology and co-lead author of the study in Science. "The magnetic field, which oscillates at a perpendicular angle to the electrical field in a light wave, is essentially blind to the upright nanowires, a feature which significantly reduces energy loss."

The innovation of this nanowire material, researchers said, is that it finds a new way to bend light backwards without technically achieving a negative index of refraction. For there to be a negative index of refraction in a metamaterial, its values for permittivity - the ability to transmit an electric field - and permeability - how it responds to a magnetic field - must both be negative.

The benefits of having a true negative index of refraction, such as the one achieved by the fishnet metamaterial in the Nature paper, is that it can dramatically improve the performance of antennas by reducing interference. Negative index materials are also able to reverse the Doppler effect - the phenomenon used in police radar guns to monitor the speed of passing vehicles - so that the frequency of waves decreases instead of increases upon approach.

But for most of the applications touted for metamaterials, such as nanoscale optical imaging or cloaking devices, both the nanowire and fishnet metamaterials can potentially play a key role, the researchers said.

"What makes both these materials stand out is that they are able to function in a broad spectrum of optical wavelengths with lower energy loss," said Zhang. "We've also opened up a new approach to developing metamaterials by moving away from previous designs that were based upon the physics of resonance. Previous metamaterials in the optical range would need to vibrate at certain frequencies to achieve negative refraction, leading to strong energy absorption. Resonance is not a factor in both the nanowire and fishnet metamaterials."

While the researchers welcome these new developments in metamaterials at optical wavelengths, they also caution that they are still far off from invisibility cloaks and other applications that may capture the imagination. For instance, unlike the cloak made famous in the Harry Potter novels, the metamaterials described here are made of metal and are fragile. Developing a way to manufacture these materials on a large scale will also be a challenge, they said.

Nevertheless, the researchers said achieving negative refraction in an optical wavelength with bulk metamaterials is an important milestone in the quest for such devices.

Co-lead authors of the Science paper are Zhaowei Liu, postdoctoral researcher; and Yongmin Liu, Ph.D. student, both members of Zhang's Lab at UC Berkeley.

The Nature paper's co-lead authors are Shuang Zhang and Thomas Zentgraf, postdoctoral researchers, who are also members of Zhang's Lab at UC Berkeley.

The NSF helped support research into both metamaterials. Additionally, the U.S. Army Research Office helped support the work reported in Nature, and the U.S. Air Force Office of Scientific Research helped fund the project described in Science.
 

madmansg

Alfrescian
Loyal
<<

Co-lead authors of the Science paper are Zhaowei Liu, postdoctoral researcher; and Yongmin Liu, Ph.D. student, both members of Zhang's Lab at UC Berkeley
>>

philip yeo probably try to recruit them but they double check the internet and discover sammboy forum that warn them NS is killing Sg.
 

annexa

Alfrescian
Loyal
<<

Co-lead authors of the Science paper are Zhaowei Liu, postdoctoral researcher; and Yongmin Liu, Ph.D. student, both members of Zhang's Lab at UC Berkeley
>>

philip yeo probably try to recruit them but they double check the internet and discover sammboy forum that warn them NS is killing Sg.

LOL knn like tat you also can anyhow connect to NS. Bro, salah boleh?
 
Top